Brettsperrholz, Steifigkeiten

# Steifigkeiten

### Dehnsteifigkeiten

Bei der Berechnung der Dehnsteifigkeiten von BSP-Elementen muss die Schichtorientierung berücksichtigt werden. Somit ergeben sich die Dehnsteifigkeiten in die Richtungen \$x\$ und \$y\$ unter der Annahme von \$E\_{90}\$ = 0 und bezogen auf die Breite von 1 m nach Glg. \eqref{eq:eqn\_cx} bzw. \eqref{eq:eqn\_cy}, wobei jeweils nur die Schichtdicken berücksichtigt werden, die in die betrachtete Richtung orientiert sind.

\begin{equation} \label{eq:eqn\_cx} {c\_x} = {E\_0} \cdot \sum\_{i=1}^{{n\_x}} {t\_{i,x}}} \end{equation}

 $\label{eq:eqn_cy} $\{c_y\} = \{E_0\} \cdot \int_{i=1}^{\{n_y\}} {\{t_{i,y}\}} \end{equation}$ 

#### Es bedeuten:

| \$c_x\$                                                         | Dehnsteifigkeit in x-Richtung                                   |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--|
| \$c_y\$                                                         | Dehnsteifigkeit in y-Richtung                                   |  |
| \$E_0\$                                                         | Elastizitätsmodul in Faserrichtung                              |  |
| \$E_{90}\$                                                      | $$$ Elastizitätsmodul quer zur Faserrichtung (i. d. R. $E_{90}$ |  |
| \$t_{i,x}\$ Dicke der Schicht i mit Faserrichtung in x-Richtung |                                                                 |  |
| \$t_{j,y}\$                                                     | Dicke der Schicht j mit Faserrichtung in y-Richtung             |  |

# Biegesteifigkeit bei Belastung normal zur Plattenebene

Die Biegesteifigkeit  $K_{\text{CLT}}$  eines BSP-Elementes wird nach Glg. \eqref{eq:eqn\_kclt} berechnet. Die abwechselnde Schichtorientierung und die somit unterschiedlichen Materialeigenschaften sind dabei zu berücksichtigen. Für längslagenorientierte Schichten ( $\alpha=0^{\circ}$ ) ist der E-Modul  $E_{0,\text{mean}}$  und für querlagenorientierte Schichten ( $\alpha=90^{\circ}$ ) der E-Modul  $E_{0,\text{mean}}$  zu verwenden.

Die Querlagen tragen aufgrund des großen Verhältnisses  $E_{0,mean}$  /  $E_{90,mean} \approx 30$  nur geringfügig zur Biegesteifigkeit bei und daher kann für die Berechnung  $E_{90,mean} = 0$  angesetzt werden.

×

Abb. 1: 5-schichtiger BSP-Querschnitt: Bezeichnungen der Abmessungen und Abstände

 $\label{eq:eqn_kclt} $\{K_{{\rm CLT}}\}\} = \sum_{\{(\{E_i\} \setminus \{I_i\}) + \sum_{\{\{E_i\} \setminus \{A_i\} \setminus \{e_i\}^2\}\}} \end{equation} $$$ 

| \$I_i\$ | Eigenträgheitsmoment der Schicht \$i\$                                  |  |
|---------|-------------------------------------------------------------------------|--|
| \$E_i\$ | E-Modul der Schicht \$i\$, je nach Orientierung \$E_0\$ oder \$E_{90}\$ |  |

Last update: 2019/02/21 10:22

\$A i\$ Querschnittsfläche der Schicht \$i\$

\$e\_i\$ Abstand zwischen Schwerpunkt \$S\_i\$ der Schicht \$i\$ und dem Gesamtschwerpunkt \$S\$

### Schubsteifigkeit bei Belastung normal zur Plattenebene

Die Schubsteifigkeit  $S_{\text{CLT}}$  (siehe Glg. \eqref{eq:eqn\_sclt}) bei Belastung normal zur Plattenebene ist abhängig von der Schubsteifigkeit des wölbfreien Querschnittes  $S_{\text{tot}}$  nach Glg. \eqref{eq:eqn\_stot} und dem Schubkorrekturfaktor  $\kappa$  nach Glg. \eqref{eq:eqn\_kappa}. Für Längslagen ist dabei der Schubmodul  $G_{\text{CLT.mean}}$  und für die Querlagen der Rollschuhmodul  $G_{\text{r.CLT.mean}}$  zu verwenden.

 $\end{constant} $$\left( G_i \cdot G_$ 

| \$G_i\$                                                               | Schubmodul der Schicht \$i\$, je nach Orientierung \$G\$ oder \$G_r |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------|--|
| \$b_i\$                                                               | Breite der Schicht \$i\$                                            |  |
| \$t_i\$                                                               | Dicke der Schicht \$i\$                                             |  |
| \$S(z,E(z))\$                                                         | Statisches Moment in Abhängigkeit der \$z\$-Koordinate              |  |
| \$G(z)\$                                                              | Schubmodul in Abhängigkeit der \$z\$-Koordinate                     |  |
| \$b(z)\$ Breite des Querschnitts in Abhängigkeit der \$z\$-Koordinate |                                                                     |  |

In Abb. 2 ist der Schubkorrekturfaktor in Abhängigkeit des Verhältnisses  $t_0$  /  $t_{\text{CLT}}$  dargestellt. Es werden die analytische Lösung für 3-, 5- und 7-schichtige Aufbauten sowie die derzeitig am Markt befindlichen BSP-Produkte gegenübergestellt. Durch den Einfluss der schubnachgiebigen Querlagen ist der Schubkorrekturfaktor der derzeitig existierenden BSP-Produkte nahezu konstant und bei einem Verhältnis von G /  $G_r = 10$  in etwa ¼ eines rechteckigen Querschnittes mit nur Längslagen, wie z.B. Vollholz oder Brettschichtholz.

In der Berechnung des Schubkorrekturfaktors nach Glg. \eqref{eq:eqn\_kappa} werden keine unterschiedlichen Brettbreiten und Fugen zwischen den Brettern berücksichtigt. In [1] wird jedoch gezeigt, dass diese beiden Parameter einen Einfluss haben. Der Schubkorrekturfaktor kann sich dadurch um ca. 10 % bis 15 % verringern.

×

Abb. 2: Schubkorrekturfaktor bei einem Verhältnis G /  $G_r = 10$  in Abhängigkeit des Verhältnisses  $t_0$  /  $t_{CLT}$  – analytische Lösung und aktuelle Produkte; berechnet mit dem CLTdesigner;  $t_0$  ist die Summe aller Schichtdicken mit  $\alpha = 0^\circ$ 

## Schubsteifigkeit bei Belastung in Scheibenebene

Die Schubsteifigkeit  $c_{xy}$  einer BSP-Scheibe ergibt sich nach Glg.  $eqref{eq:eqn_3}$  als Produkt des effektiven Schubmoduls  $G^*$  und der Gesamtdicke  $t_{CLT}$ . Der effektive Schubmodul wird

nach Glg. \eqref{eq:eqn 4} berechnet.

 $\label{eq:eqn_3} \{c_{xy}\} = \{G^* \} \setminus \{t_{CLT}\} \setminus \{equation\}$ 

mit

 $\label{eq:eqn_4} {G^*} = {\{\{G_0\}\} \setminus \{1+6 \setminus \{p_S\} \setminus \{\{\{t \in a\}\} \}\}\} = \\ \text{$\cong a$} \right)^{\{q S\}}} = \\ \text{$\cong a$} \to \{\{G^*\} \setminus \{G^*\} \} = \\ \text{$\cong a$} \to \{\{G^*\} \setminus \{G^*\} \} = \\ \text{$\cong a$} \to \{\{G^*\} \setminus \{G^*\} \setminus \{G^*\} \setminus \{G^*\} \} = \\ \text{$\cong a$} \to \{\{G^*\} \setminus \{G^*\} \setminus \{G^*\}$ 

und  $q_s = 1,21$  sowie  $p_s = 0,53$  für 3-schichtige und  $p_s = 0,43$  für 5- und 7-schichtige BSP-Scheiben (gültig für  $G_0$  /  $G_{90} = 10$ )

Die Faktoren  $q_s$  und  $p_s$  wurden im Zuge einer FE-Studie [2] ermittelt und sind u.a. in ON B 1995-1-1:2014 11 15 verankert.

#### Es bedeuten:

| \$c_{xy}\$  | Schubsteifigkeit einer BSP-Scheibe            |
|-------------|-----------------------------------------------|
| \$G^*\$     | effektiver Schubmodul                         |
| \$G_0\$     | Schubmodul                                    |
| \$t_{CLT}\$ | Gesamtdicke der BSP-Scheibe                   |
| \$t\$       | mittlere Schichtdicke (\$t\$ = \$t_{CLT}/n\$) |
| \$a\$       | Brettbreite (i. Allg. \$a\$ = 150 mm)         |

Tab. 1: Reduktionsfaktor  $\kappa_{CLT.S}$ 

| t/a | K <sub>CLT,S</sub> |                    |  |
|-----|--------------------|--------------------|--|
| L/a | 3-schichtig        | 5- und 7-schichtig |  |
| 1:6 | 0,73               | 0,77               |  |
| 1:5 | 0,69               | 0,73               |  |
| 1:4 | 0,63               | 0,67               |  |
| 1:3 | 0,54               | 0,59               |  |
| 1:2 | 0,42               | 0,47               |  |

### **Drillsteifigkeit**

In [2] wird die Drillsteifigkeit  $D_{xy}$  einer homogenen Platte mit orthotropem Material nach Glg. \eqref{eq:eqn\_dxy} angegeben, wobei der Schubmodul  $G_{xy}$  über die gesamte Dicke t konstant sein muss. Im Fall von Brettsperrholz trifft dies nur für schmalseitenverklebte, völlig rissfreie Produkte zu. Ist dies nicht der Fall, muss eine Abminderung nach Glg. \eqref{eq:eqn\_dxy\_stern} bzw. \eqref{eq:eqn\_kappa\_clt\_p} in Abhängigkeit der Schichtanzahl und der Brettgeometrie vorgenommen werden. Diese Abminderungsfunktion wurde in [2] anhand einer FE-Studie ermittelt. Die Parameter p und q sind der Tab. 2 zu entnehmen. Für Platten mit unterschiedlichen Schichtdicken kann näherungsweise mit einer mittleren Schichtdicke gerechnet werden.

 $\label{eq:eqn_dxy} $\{D_{xy}\} = \{G_{xy}\} \setminus \{t_{CLT}^3\} \setminus \{12\}\} \\ \label{eq:eqn_dxy} $\{D_{xy}\} \in \{f_{xy}\} \setminus \{12\}\} \\ \label{eq:eqn_dxy} $\{D_{xy}\} \in \{f_{xy}\} \setminus \{12\}\} \\ \label{eq:eqn_dxy} $\{D_{xy}\} \in \{f_{xy}\} \setminus \{12\}\} \\ \label{eq:eqn_dxy} $\{f_{xy}\} \in \{f_{xy}\} \setminus \{f_{xy}\} \in \{f_{xy}\} \setminus \{f_{xy}\} \setminus \{f_{xy}\} \\ \label{eq:eqn_dxy} $\{f_{xy}\} \in \{f_{xy}\} \setminus \{f_{x$ 

 $\label{eq:eqn_dxy_stern} D_{xy}^* = {\cot {D_{xy}} \cdot {D_{xy}$ 

 $\ensuremath{\mbox{begin}\{\mbox{equation}\} \ensuremath{\mbox{eq:eqn}\mbox{kappa}\clt_p\} \ensuremath{\mbox{CLT,P}}\} = \{1 \ensuremath{\mbox{vor}\ \{1+6 \ensuremath{\mbox{cdot}\ \{\ensuremath{\mbox{happa}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\ensuremath{\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\ensuremath{\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\ensuremath{\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\ensuremath{\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\ensuremath{\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\ensuremath{\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{eq:eqn}\mbox{$ 

Last update: 2019/02/21 10:22

{FIT}} \cdot {{\left( {{t \over a}} \right)}^2}}} \end{equation}

\end{equation}

| \$D_{xy}\$ Drillsteifigkeit einer homogenen Platte mit orthotropem Material ode schmalseitenverklebte BSP-Platten ohne Risse |                                                                         |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| \$D_{xy}^*\$                                                                                                                 | reduzierte Drillsteifigkeit für BSP-Platten ohne Schmalseitenverklebung |
| \$\kappa_{CLT,P}\$ Reduktionsfaktor zur Abminderung der Plattendrillsteifigkeit                                              |                                                                         |
| \$t\$                                                                                                                        | Brettdicke                                                              |
| \$a\$                                                                                                                        | Brettbreite                                                             |

Tab. 2: Anpassungsparameter p und q für 3-, 5- und 7-schichtige BSP-Elemente

| Parameter | 3-schichtig | 5-schichtig | 7-schichtig |
|-----------|-------------|-------------|-------------|
| р         | 0,89        | 0,67        | 0,55        |
| q         | -0,67       | -0,74       | -0,77       |

Die Abhängigkeit der Reduktionsfaktoren von t/a ist in Tab. 3 dargestellt.

Tab. 3: Reduktionsfaktor  $\kappa_{CLTP}$ 

|     | CLI,I              |             |             |
|-----|--------------------|-------------|-------------|
| t/a | K <sub>CLT,P</sub> |             |             |
| L/a | 3-schichtig        | 5-schichtig | 7-schichtig |
| 1:6 | 0,67               | 0,70        | 0,73        |
| 1:5 | 0,61               | 0,65        | 0,69        |
| 1:4 | 0,54               | 0,59        | 0,63        |
| 1:3 | 0,45               | 0,50        | 0,54        |

# **Torsionssteifigkeit**

In [3][4] wird die Torsionssteifigkeit eines BSP-Trägers nach Glg. \egref{eg:torsionsteifigkeit} (Näherungslösung; siehe auch Torsionsträgheitsmoment eines Rechteckquerschnitts) angegeben.  $\left( \{1 - 0,63 \cdot \{\{t \cdot \{CLT\}\}\} \right) \right)$ Berücksichtigung von Wölbeffekten.

\begin{equation} \label{eq:torsionsteifigkeit}  $G\{I \mid text\{tor\}\} = 4 \mid D \mid text\{xy\}^* \mid text\{xy\}^* \mid text\{xy\}^* \mid text\{tor\}\} = 4 \mid text\{xy\}^* \mid text\{tor\}\} = 4 \mid text\{xy\}^* \mid text\{tor\}\} = 4 \mid text\{tor\}\} = 4 \mid text\{xy\}^* \mid text\{tor\}\} = 4 \mid text{$  $\left( \{1 - 0.63 \cdot \{\{\{t \cdot \{CLT\}\}\} \cdot \} \right) \cdot \left( \{1 - 0.63 \cdot \{\{\{t \cdot \{CLT\}\}\} \cdot \} \right) \cdot \left( \{1 - 0.63 \cdot \{\{\{t \cdot \{CLT\}\}\} \cdot \} \right) \cdot \left( \{1 - 0.63 \cdot \{\{\{t \cdot \{CLT\}\}\} \cdot \{CLT\}\} \right) \cdot \left( \{1 - 0.63 \cdot \{\{\{t \cdot \{CLT\}\}\} \cdot \{CLT\}\} \right) \cdot \left( \{1 - 0.63 \cdot \{\{\{t \cdot \{CLT\}\}\} \cdot \{CLT\}\} \right) \cdot \left( \{1 - 0.63 \cdot \{\{\{t \cdot \{\{t \cdot \{CLT\}\}\}\} \cdot \{\{CLT\}\}\} \cdot \{\{\{t \cdot \{\{t \cdot \{\{\{t \cdot \{\{t \}\}\}\}\}}\}}\}}\}}\}}}\right\}}}\right)}\right)}}\right)}}\right)}}\right)}}}\right)}$ 

| \$h\$             | Höhe des BSP-Trägers |
|-------------------|----------------------|
| \$D_\text{xy}^*\$ | Drillsteifigkeit     |

From:

https://www.ihbv.at/wiki/ - IHBV Wiki

Permanent link:

https://www.ihbv.at/wiki/doku.php?id=clt:design:stiffness:stiffness&rev=1526992456

Last update: 2019/02/21 10:22 Printed on 2025/11/01 19:54

