Steifigkeiten

Dehnsteifigkeiten

Bei der Berechnung der Dehnsteifigkeiten von BSP-Elementen muss die Schichtorientierung berücksichtigt werden. Somit ergeben sich die Dehnsteifigkeiten in die Richtungen x und y unter der Annahme von E_{90} = 0 und bezogen auf die Breite von 1 m nach Glg. $eqref\{eq:eqn_cx\}$ bzw. $eqref\{eq:eqn_cy\}$, wobei jeweils nur die Schichtdicken berücksichtigt werden, die in die betrachtete Richtung orientiert sind.

\begin{equation} \label{eq:eqn_cx} {c_x} = {E_0} \cdot \sum_{i=1}^{{n_x}} {t_{i,x}}} \end{equation}

 $\label{eq:eqn_cy} $\{c_y\} = \{E_0\} \cdot \sinh\{i = 1\}^{\{n_y\}} \{\{t_{i,y}\}\} \\ end{equation}$

Es bedeuten:

\$c_x\$	Dehnsteifigkeit in x-Richtung	
\$c_y\$	Dehnsteifigkeit in y-Richtung	
\$E_0\$	Elastizitätsmodul in Faserrichtung	
\$E_{90}\$	Elastizitätsmodul quer zur Faserrichtung (i. d. R. E_{90} = 0)	
\$t_{i,x}\$	t_{i,x}\$ Dicke der Schicht i mit Faserrichtung in x-Richtung	
\$t_{j,y}\$	Dicke der Schicht j mit Faserrichtung in y-Richtung	

Biegesteifigkeit bei Belastung normal zur Plattenebene

Die Biegesteifigkeit K_{CLT} eines BSP-Elementes wird nach Glg. \eqref{eq:eqn_kclt} berechnet. Die abwechselnde Schichtorientierung und die somit unterschiedlichen Materialeigenschaften sind dabei zu berücksichtigen. Für längslagenorientierte Schichten ($\alpha=0^{\circ}$) ist der E-Modul $E_{0,\text{mean}}$ und für querlagenorientierte Schichten ($\alpha=90^{\circ}$) der E-Modul $E_{90,\text{mean}}$ zu verwenden.

Die Querlagen tragen aufgrund des großen Verhältnisses $E_{0,mean}$ / $E_{90,mean} \approx 30$ nur geringfügig zur Biegesteifigkeit bei und daher kann für die Berechnung $E_{90,mean} = 0$ angesetzt werden.

Abb. 1: 5-schichtiger BSP-Querschnitt: Bezeichnungen der Abmessungen und Abstände

 $\label{eq:eqn_kclt} $\{K_{{\rm CLT}}\}\} = \sum_{\{(E_i) \setminus \{I_i\}\}} + \sum_{\{(E_i) \setminus \{A_i\} \setminus \{A_i\} \setminus \{A_i\}\}} \ \ \$

\$I_i\$	Eigenträgheitsmoment der Schicht \$i\$	
\$E_i\$	i\$ E-Modul der Schicht \$i\$, je nach Orientierung \$E_0\$ oder \$E_{90}\$	
\$A_i\$	i\$ Querschnittsfläche der Schicht \$i\$	
\$e_i\$	Abstand zwischen Schwerpunkt \$S_i\$ der Schicht \$i\$ und dem Gesamtschwerpunkt \$S\$	

Last update: 2019/02/21

Schubsteifigkeit bei Belastung normal zur Plattenebene

Die Schubsteifigkeit S_{CLT} (siehe Glg. \eqref{eq:eqn_sclt}) bei Belastung normal zur Plattenebene ist abhängig von der Schubsteifigkeit des wölbfreien Querschnittes S_{tot} nach Glg. \eqref{eq:eqn_stot} und dem Schubkorrekturfaktor κ nach Glg. \egref{eg:egn kappa}. Für Längslagen ist dabei der Schubmodul G_{CLT.mean} und für die Querlagen der Rollschuhmodul G_{r.CLT.mean} zu verwenden.

\end{equation}

 $\begin{equation} \label{eq:eqn_stot} {S_{{\text{tot}}}} = \sum {({G_i} \cdot {b_i} \cdot {t_i}) = } \\$ \sum {({G i} \cdot {A i})} } \end{equation}

 $\ensuremath{\mbox{begin}\{\ensuremath{\mbox{equation}} \aligned \ensuremath{\mbox{eq:eqn kappa}} \aligned \ali$ ${K_{{\text{CLT}}}}^2} \cdot {K_{{\text{CLT}}}} {\{(S^2)(z,E(z))\} \setminus \{G(z) \cdot G(z) \cdot G(z)\}}$ b(z)}}{\text{d}}z} }} \end{equation}

\$G_i\$	Schubmodul der Schicht \$i\$, je nach Orientierung \$G\$ oder \$G_r\$	
\$b_i\$	Breite der Schicht \$i\$	
\$t_i\$	Dicke der Schicht \$i\$	
\$S(z,E(z))\$	Statisches Moment in Abhängigkeit der \$z\$-Koordinate	
\$G(z)\$	Schubmodul in Abhängigkeit der \$z\$-Koordinate	
\$b(z)\$ Breite des Querschnitts in Abhängigkeit der \$z\$-Koordinate		

In Abb. 2 ist der Schubkorrekturfaktor in Abhängigkeit des Verhältnisses t₀ / t_{CLT} dargestellt. Es werden die analytische Lösung für 3-, 5- und 7-schichtige Aufbauten sowie die derzeitig am Markt befindlichen BSP-Produkte gegenübergestellt. Durch den Einfluss der schubnachgiebigen Querlagen ist der Schubkorrekturfaktor der derzeitig existierenden BSP-Produkte nahezu konstant und bei einem Verhältnis von G / $G_r = 10$ in etwa ½ eines rechteckigen Querschnittes mit nur Längslagen, wie z.B. Vollholz oder Brettschichtholz.

In der Berechnung des Schubkorrekturfaktors nach Glg. \eqref{eq:eqn_kappa} werden keine unterschiedlichen Brettbreiten und Fugen zwischen den Brettern berücksichtigt. In [1] wird jedoch gezeigt, dass diese beiden Parameter einen Einfluss haben. Der Schubkorrekturfaktor kann sich dadurch um ca. 10 % bis 15 % verringern.

Abb. 2: Schubkorrekturfaktor bei einem Verhältnis G / $G_r = 10$ in Abhängigkeit des Verhältnisses t_0 / t_{CLT} – analytische Lösung und aktuelle Produkte; berechnet mit dem CLTdesigner; t_0 ist die Summe aller Schichtdicken mit $\alpha = 0^{\circ}$

Schubsteifigkeit bei Belastung in Scheibenebene

Die Schubsteifigkeit \$c {xy}\$ einer BSP-Scheibe ergibt sich nach Glg. \egref{eq:eqn 3} als Produkt des effektiven Schubmoduls \$G^*\$ und der Gesamtdicke \$t {CLT}\$. Der effektive Schubmodul wird nach Glg. \eqref{eq:eqn_4} berechnet.

 $\begin{equation} \label{eq:eqn_3} {c_{xy}} = {G^*} \cdot {t_{CLT}} \end{equation}$

mit

und $q_s = 1,21$ sowie $p_s = 0,53$ für 3-schichtige und $p_s = 0,43$ für 5- und 7-schichtige BSP-Scheiben (gültig für G_0 / $G_{q_0} = 10$)

Die Faktoren q_s und p_s wurden im Zuge einer FE-Studie [2] ermittelt und sind u.a. in ON B 1995-1-1:2014 11 15 verankert.

Es bedeuten:

\$c_{xy}\$	Schubsteifigkeit einer BSP-Scheibe
\$G^*\$	effektiver Schubmodul
\$G_0\$	Schubmodul
\$t_{CLT}\$	Gesamtdicke der BSP-Scheibe
\$t\$	mittlere Schichtdicke ($$t$ = t_{CLT}/n)$
\$a\$	Brettbreite (i. Allg. \$a\$ = 150 mm)

Drillsteifigkeit

In [2] wird die Drillsteifigkeit D_{xy} einer homogenen Platte mit orthotropem Material nach Glg. \eqref{eq:eqn_dxy} angegeben, wobei der Schubmodul G_{xy} über die gesamte Dicke t konstant sein muss. Im Fall von Brettsperrholz trifft dies nur für schmalseitenverklebte, völlig rissfreie Produkte zu. Ist dies nicht der Fall, muss eine Abminderung nach Glg. \eqref{eq:eqn_dxy_stern} bzw. \eqref{eq:eqn_kappa_clt_p} in Abhängigkeit der Schichtanzahl und der Brettgeometrie vorgenommen werden. Diese Abminderungsfunktion wurde in [2] anhand einer FE-Studie ermittelt. Die Parameter p und q sind der Tab. 1 zu entnehmen. Für Platten mit unterschiedlichen Schichtdicken kann näherungsweise mit einer mittleren Schichtdicke gerechnet werden.

 $\label{eq:eqn_dxy} $\{D_{xy}\} = \{G_{xy}\} \setminus \{t_{CLT}^3\} \setminus \{12\}\} \\ end{equation}$

 $\label{eq:eqn_dxy_stern} D_{xy}^* = {\cot {D_{xy}} \cdot {D_{xy}$

 $\equation \equation \equ$

	Drillsteifigkeit einer homogenen Platte mit orthotropem Material oder schmalseitenverklebte BSP-Platten ohne Risse		
\$D_{xy}^*\$	\$D_{xy}^*\$ reduzierte Drillsteifigkeit für BSP-Platten ohne Schmalseitenverklebung		
\$\kappa_{CLT,P}\$ Reduktionsfaktor zur Abminderung der Plattendrillsteifigkeit			
\$t\$ Brettdicke			
\$a\$	Brettbreite		

Tab. 1: Anpassungsparameter p und q für 3-, 5- und 7-schichtige BSP-Elemente

Last update: 2019/02/21 10:22

Parameter	3-schichtig	5-schichtig	7-schichtig
р	0,89	0,67	0,55
q	-0,67	-0,74	-0,77

Die Abhängigkeit der Reduktionsfaktoren von t/a ist in Tab. 2 dargestellt.

Tab. 2: Reduktionsfaktor κ_{CLTP}

t/a	K _{CLT,P}		
	3-schichtig	5-schichtig	7-schichtig
1:6	0,67	0,70	0,73
1:5	0,61	0,65	0,69
1:4	0,54	0,59	0,63
1:3	0,45	0,50	0,54

Torsionssteifigkeit

In [3][4] wird die Torsionssteifigkeit eines BSP-Trägers nach Glg. \eqref{eq:torsionsteifigkeit} (Näherungslösung; siehe auch Torsionsträgheitsmoment eines Rechteckquerschnitts) angegeben. $\frac{1 - 0,63 \cdot ({t_\text{L}})}{\text{CLT}}} \operatorname{beschreibt} dabei die näherungsweise Berücksichtigung von Wölbeffekten.}$

 $\label{eq:torsionsteifigkeit} G\{I_\text{tor}\} = 4 \cdot D_\text{xy}^* \cdot h \cdot dot \cdot \{\{1 - 0,63 \cdot \{\{t_\text{cLT}\}\}\} \cdot h\} \cdot d\{equation\}$

\$h\$	Höhe des BSP-Trägers
<pre>\$D \text{xy}^*\$</pre>	Drillsteifigkeit

Referenzen

From:

https://www.ihbv.at/wiki/ - IHBV Wiki

Permanent link:

https://www.ihbv.at/wiki/doku.php?id=clt:design:stiffness:stiffness&rev=1510563711

×

Last update: **2019/02/21 10:22** Printed on 2025/11/01 19:54