Transversal-schubnachgiebiger Träger nach Timoshenko

Allgemeines

Der WTimoshenko-Balkentheorie liegen die folgenden Annahmen zugrunde:

- Der Querschnitt steht im Vergleich zum WBernoulli-Balken nicht mehr senkrecht auf die verformte Stabachse.
- Der Querschnitt bleibt, gleich wie beim Bernoulli-Balken, eben (WNavier).
- Unter einer Querkraftverformung treten Schubgleitungen und somit Schubverwölbungen auf, welche im Widerspruch zur Annahme des Ebenbleibens stehen. Dies führt zu Diskrepanzen bei der Schubspannungs- bzw. Schubsteifigkeitsermittlung.
- Mit dem Konzept des Schubkorrekturfaktors κ wird der Fehler bei der Schubsteifigkeit für elastisches Verhalten berichtigt.
- Die Schubspannungsermittlung im Querschnitt erfolgt dann, ident zum Bernoulli-Balken, über das lokale Längsgleichgewicht mit den Biegespannungen. Man spricht daher in der Literatur auch von sekundären Schubspannungen.

Gleichungen der schubnachgiebigen Trägertheorie

Kinematik des Balkenelements

Das Balkenelement aus Abb. 1 erfährt eine Verschiebung w(x) in transversaler Richtung (= Durchbiegung) und eine, davon unabhängige, Querschnittsverdrehung θ

Abb. 1: Verschobenes und verdrehtes Balkenelement

Die Verschiebungen \$u\$ und \$w\$ jedes Stabpunktes werden durch einen Produktansatz beschrieben. Dabei ist der erste Faktor die Stablängsachse \$x\$ mit den beiden Funktionen \$w(x)\$ und \$\beta(x)\$. Der zweite Faktor beschreibt die Lage im Querschnitt (\$z\$- Koordinate bei der Querschnittsverdrehung bzw. "1" bei der Durchbiegung). Aus den angenommenen Verschiebungen können die Verzerrungen des Stabes (Biegeverzerrungen, Querkraftschubverzerrung) bestimmt werden.

\begin{equation} \label{eq:eqn timoshenko uxz} $u(x,z) = z \cdot (x) \cdot (x) \cdot (x)$

 $\ensuremath{\mbox{begin}\{\mbox{equation}\}\ \mbox{label}\{\mbox{eq:eqn timoshenko wxz}\}\ \mbox{w}(x,z) = \mbox{w}(x) \ensuremath{\mbox{eq}}\ \mbox{equation}\}$

 $\begin{equation} \label{eq:eqn_timoshenko_epsilonx} {\varepsilon _\text{x}}(x,z) = {\{\partial u\} \vor {\partial x}} = z \cdot \beta '(x) \cdot \end{equation}$

Kinetik und Konstitution

Aufgrund der getroffenen Annahmen in z-Richtung, können durch Integration der Spannungen \sum_{x} und \int_{x} und \int_{x} am Querschnitt bestimmt werden.

 $\ensuremath{\mbox{\mbox{$\setminus$}} \ensuremath{\mbox{\mbox{\setminus}} \ensuremath{\mbox{\setminus}} \ensuremath{\mbo$

 $\label{eq:eqn_timoshenko_herleitung_tauxz} {\tau _{xz}} = G(x) \cdot {\tau_{xz}} = G(x) \cdot {\tau$

 $\label{eq:eqn_timoshenko_herleitung_My} $$\{M_y\} = \left(\frac{x^2} \cdot dA \right) = E(z) \cdot \left(\frac{x^2} \cdot dA \right) =$

 $\label{eq:eqn_timoshenko_herleitung_Qz} \{Q_z\} = \left\{ \frac{xz} \right\} \cdot dA = G(z) \cdot \cdot dA = G$

In den Gleichungen für das Biegemoment \$M_\text{y}\$ und der Querkraft \$Q_\text{z}\$ sind die BSP-Steifigkeiten – die Biegesteifigkeit \$K_\text{CLT}\$ und die Schubsteifigkeit \$GA\$ – zu berücksichtigen. Die Schubspannungen, errechnet aus dem Verschiebungsansatz, erfüllen jedoch nicht das lokale Längsgleichgewicht mit den Biegespannungen. Diese Lösung der Schubspannungsverteilung ist aber auf jeden Fall einzuhalten. Die ermittelte Schubsteifigkeit \$GA\$ stimmt daher nicht, sie wird mit dem Schubkorrekturfaktor \$\kappa\$ zu \$S_\text{CLT}\$ korrigiert. Somit ändert sich die Gleichung der Querkraft \$Q \text{z}\$ zu:

 $\label{eq:eqn_timoshenko_herleitung_Qz_1} {Q_z} = \left\{ \frac{xz} \right\} \cdot dA \equiv {S {CLT}} \cdot \left\{ \frac{xz} \right\} \cdot dA \equiv {S {CLT}} \cdot \left\{ \frac{xz} \right\} \cdot dA \equiv {S {CLT}} \cdot dA \equiv {S {CL$

 $\label{eq:eqn_timoshenko_herleitung_Sclt} {S_{CLT}} = \kappa \cdot GA \end{equation}$

Gleichgewicht

Mit den ermittelten Schnittgrößen können die Gleichgewichtsbedingungen anschaulich dargestellt werden.

×

Abb. 2: Schnittgrößen am infinitesimal kleinen Balkenelement

 $\sum {V = 0}$:

 $\label{eq:eqn_timoshenko_summeV} $$\{q_z\}(x) \cdot dx + {\{d\{Q_z\}\} \setminus dx \} \cdot dx = 0{\rm } {rm\{ \}} \cdot {p_z}' + {q_z}(x) = 0 \cdot {q_z}' \}$$$

 $\sum \{M = 0\}$:

 $\label{eq:eqn_timoshenko_summeM} \ M_y' \ dx - \{Q_z\} \ dx = 0 \ \} \\ \ Rightarrow \ \{\text{}\}M_y' - \{Q_z\} = 0 \ end\{equation\}$

Differentialgleichungen des schubnachgiebigen Balkens

Als Belastung wirkt eine kontinuierliche Vertikallast q_{v}

Vertikales Gleichgewicht

 $\label{eq:eqn_timoshenko_vertikales_gleichgewicht_DGL} {S_{CLT}} \cdot \left((x) + w''(x) \right) = - {q z}(x) \end{equation}$

Momentengleichgewicht

 $\label{eq:eqn_timoshenko_momentengleichgewicht_My} $\{M_y\} = \{K_{CLT}\} \cdot (x) \cdot \{\} \} \$

 $\label{eq:eqn_timoshenko_momentengleichgewicht_DGL} $$ K_{CLT}} \cdot (x) - {S_{CLT}} \cdot (x) + w'(x)} \cdot (x) + w'(x) \cdot (x) \cdot (x) + w'(x) \cdot (x) \cdot (x) + w'(x) \cdot ($

Es ergibt sich ein System von zwei gekoppelten Differentialgleichungen 2. Ordnung.

Biege- und Schubspannungen

Abb. 3: Spannungen bei BSP unter Querkraftbiegung ($E_{90} = 0$)

Biegespannung

Für BSP-Aufbauten mit gleichem \$E_0\$ aller Längslagen ergibt sich somit die maximale Normalspannung am Rand.

 $\label{eq:timoshenko_sigmaMax} \simeq _{\{\{M_\text{eq:timoshenko_sigmaMax} \ L(M_\text{eq:timoshenko_sigmaMax}) \ L(M_\text{eq:timoshenko_sigmaMax})} \setminus \{\{K_{\{\text{cLT}\}}\}\} \ L(M_\text{eq:timoshenko_sigmaMax}) \setminus \{M_{\text{eq:timoshenko_sigmaMax}} \setminus \{M_{\text{eq:t$

Schubspannung

 $\label{eq:timoshenko_tau} \tau(z) = \{\{\{V_\text{z}(x)\} \cdot \{\{-t_{CLT}/2\}\}^z \{E(z^*) \cdot z^* \cdot b \cdot t_{T_{d}}z^*\} \} \cdot \{\{K_{\{\text{CLT}\}}\}\} \cdot b\} \tagged b \tagg$

Vorteile dieser Methode

- Erfasst beliebige Systeme und Lasten
- Der schubnachgiebige Stab ist in den meisten Baustatik-Softwarepaketen enthalten. Daher sehr gut für den EDV-Einsatz in der Praxis geeignet
- Über das Kraftgrößenverfahren auch für die Handrechnung geeignet
- Problemlos auf Platten (ebene Flächentragwerke) sowie die 2D-Plattentheorie (WReissner-Mindlin-Plattentheorie) erweiterbar
- Bei den ermittelten Durchbiegungen handelt es sich zwar nur um Näherungen, welche aber bei üblichen L/H-Verhältnissen für die Praxis als ausreichend genau anzusehen sind.

Nachteile dieser Methode

 Bei Einzellasten sowie den Innenauflagern von Durchlaufträgern ist im direkten Lasteinleitungsbereich eine Abweichung der ermittelten Biegespannungen gegeben

From

https://www.ihbv.at/wiki/ - IHBV Wiki

Permanent link:

https://www.ihbv.at/wiki/doku.php?id=clt:design:plate_loaded_out_of_plane:calculation_methods:timoshenko&rev=1486577684

Last update: **2019/02/21 10:28** Printed on 2025/11/03 09:49