Zug (Belastung in Scheibenebene)

Werden BSP-Bauteile in der Scheibenebene auf Zug beansprucht, erfolgt - unter der Annahme, dass der E-Modul in Faserrichtung $E_{0,mean}$ für alle Schichten gleich ist - der Nachweis nach Glg. \eqref{eq:eqn 1 tension}. Für die effektive Fläche A_{ef} werden dabei nur jene Lagen in Rechnung gestellt, bei denen die Faserrichtung parallel zur Kraftrichtung ist.

 $\ensuremath{\mbox{begin}\{\ensuremath{\mbox{eq:eqn_1_tension}} \{\{\{N_{\mbox{d}}\}\} \ensuremath{\mbox{vor}} \{\{A_{\mbox{text}}\{\ensuremath{\mbox{ef}}\}\}\} \ensuremath{\mbox{le}}$ {f \text{t,0,CLT,net,d}} \end{equation}

Abb. 1: Verlauf der Normalspannungen über den Querschnitt bei Normalkraftbeanspruchung ($E_{90} = 0$); links: außenliegende Längslagen, rechts: außenliegende Querlagen

\$N_\text{d}\$	Bemessungswert der Normalkraft
\$A_\text{ef}\$	effektive Querschnittsfläche
\$f_\text{t,0,CLT,net,d}\$	Bemessungswert der Zugfestigkeit bei Belastung in Scheibenebene

From:

https://www.ihbv.at/wiki/ - IHBV Wiki

Permanent link:

https://www.ihbv.at/wiki/doku.php?id=clt:design:plate_loaded_in_plane:tension&rev=1485789541

Last update: 2019/02/21 10:22 Printed on 2025/11/01 05:56