Zug (Belastung in Scheibenebene)

Werden BSP-Bauteile in der Scheibenebene auf Zug beansprucht, erfolgt - unter der Annahme, dass der E-Modul in Faserrichtung $E_{0,mean}$ für alle Schichten gleich ist - der Nachweis nach Glg. \eqref{eq:eqn 1 tension}. Für die effektive Fläche A_{ef} werden dabei nur jene Lagen in Rechnung gestellt, bei denen die Faserrichtung parallel zur Kraftrichtung ist. Der Systemfaktor k_{syst.0} berücksichtigt dabei die Systemwirkung von parallel wirkenden Lamellen. Aktuell ist dieser Faktor aleich 1.0 **Fix Me!**

 $\ensuremath{\mbox{begin}\{\ensuremath{\mbox{eq.eqn_1 tension} \{\{\{N_{\mbox{d}}\}\} \setminus \{\{A_{\mbox{ext}}\}\}\}} \$ $\{f \text{text}\{t,0,CLT,net,d\}\} = \{\{\{k \text{text}\{mod\}\} \setminus \{f \text{text}\{t,0,CLT,net,k\}\}\} \}$ $\label{eq:linear_loss} $$ = {k_\text{sys,t,0}} \cdot {\{\{k_\text{mod}\} \cdot \{f_\text{t,0,l,k}\}\} \setminus {\{\{gamma \in \{k_\text{mod}\}\} \cdot \{f_\text{t,0,l,k}\}\} } } $$$ _\text{M}}}} \end{equation}

Abb. 1: Verlauf der Normalspannungen über den Querschnitt bei Normalkraftbeanspruchung ($E_{90} = 0$); links: außenliegende Längslagen, rechts: außenliegende Querlagen

\$N_\text{d}\$	Bemessungswert der Normalkraft
\$A_\text{ef}\$	effektive Querschnittsfläche
\$f_\text{t,0,CLT,net,d}\$	Zugfestigkeit in Faserrichtung (Bemessungswert)
\$f_\text{t,0,CLT,net,k}\$	charakteristische Zugfestigkeit in Faserrichtung
\$k_\text{mod}\$	Modifikationsbeiwert
\$\gamma _\text{M}\$	Teilsicherheitsbeiwert für BSP
\$k_\text{sys,t,0}\$	Systemfaktor
\$f_\text{t,0,l,k}\$	charakteristische Zugfestigkeit eines Brettes in Faserrichtung

https://www.ihbv.at/wiki/ - IHBV Wiki

Permanent link:

https://www.ihbv.at/wiki/doku.php?id=clt:design:plate_loaded_in_plane:tension&rev=1485788696

Last update: 2019/02/21 10:22 Printed on 2025/11/01 05:42

